Social Media Mining Project

OBJECTIVE: ANALYZING SHIFTS IN USER BEHAVIOR AND EMOTIONS BEFORE,
DURING, AND AFTER THE IPHONE 16 ANOUNCEMENT ON SEPTEMBER 9, 2024




Structure of the project 500 YT videos

(before event)
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Research questions

- What words are most associated with the topic? Can we identify iphone 16 features from the most used ones?
- What sentiment is associated with iphone 16 features?

- Have feature sentiments shifted before, during and after the apple event?

- Has spam comments density shifted before, during and after the apple event?

- What are the accounts that produce the most spam?

- What percentage of anomalous accounts generate spam?

- Are the nodes central because they produce spam or because of engagement?

- Are spam generator accounts likely to comment on the same videos (target similar videos)? What about anomalous
accounts? what about accounts with similar sentiment behaviour?

- Isthe spam percentage in the biggest communities higher than the general spam percentage?

- How is the sentiment distributed across the biggest communities?



Spam Classifier - Downloaded dataset

msno.matrix(original_df)

print(original_df['CLASS'].value_counts())

CLASS
1 1005
) 051

Name: count, dtype: int64



Spam Classifier - Semi-Supervised Learning Labelling

OpenAl API

# Visualize number of spam detected
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Spam Classifier - Custom Transformers

Data Cleaner Custom Transformer

class DataCleaner(BaseEstimator, TransformerMixin):
def __init__ (self):
DetectorFactory.seed = @ # Make language identification consistent if performed multiple times

def fit(self, X, y=None):
return self

def transform(self, X, y=None):
df = pd.DataFrame(X)

# Remove non english comments

df ['language'] = df['content'].apply(self.detect_language)
df = df[df['lanqguage'] == 'en']

df.drop(['lanquage'], axis=1, inplace=True)

return df

def detect_language(self, text):
try:
return detect(text)
except LangDetectException:
return 'unknown'



Spam Classifier - Custom Transformers

Feature Extraction Custom Transformer

class FeatureExtractor(BaseEstimator, TransformerMixin):
def __init__ (self):
self.sia = SentimentIntensityAnalyzer()

def fit(self, X, y=None):
return self

def transform(self, X, y=None):
# X is expected to be a pandas Series of text comments (i.e., the 'content' column)
df = pd.DataFrame(X)

df ['text_length'] = df['content'].apply(len)

df ['num_links'] = df['content'].apply(lambda x: len(re.findall(r'http[s]?://\S+', x)))

df ['num_special_chars'] = df['content'].apply(lambda x: len(re.findall(r'[*a-zA-Z@-9\s]', x)))

df ['capitalization_ratio']l = df['content'].apply(lambda x: sum(1l for ¢ in x if c.isupper()) / (len(x) + 1)) # Avoid division by zero
df ['num_digits'] = df['content'].apply(lambda x: sum(c.isdigit() for c in x))

df ['num_repeated_chars'] = df['content'].apply(lambda x: sum([1 for i in range(1l, len(x)) if x[i] == x[i-1]]))

# Sentiment score
df ['sentiment_score'] = df['content'].apply(lambda x: self.sia.polarity_scores(x)['compound'])

return df



Spam Classifier - Custom Transformers

Text Preprocessing Custom Transformer

class TextPreprocessingTransformer(BaseEstimator, TransformerMixin):
def __init__ (self):
# Load resources in the constructor
self.stop_words = set(stopwords.words('english')) def preprocess_text(self, text):

self.lemmatizer = WordNetLemmatizer() # Function to reduce repeated characters (e.g., "helooo" —> "hello")
def reduce_repeated_characters(word):

return re.sub(r'(.)\1+"', r'\1\1', word)
def fit(self, X, y=None):
return self # 1. Lowercase the text
text = text. lower()

def transform(self, X, y=None): # 2. Remove URLs
# Apply text preprocessing text = re.sub(r'httplsl?://\S+', '', text)
X['content'] = X['content'].apply(self.preprocess_text)

# 3. Remove special characters, numbers, and punctuation
return X text = re.sub(r'[~a-zA-Z\s]', '', text)

# 4. Remove stopwords
words = text.split()
words = [word for word in words if word not in self.stop_words]

# 5. Reduce repeated characters (e.g., "helooo" —> "hello")
words = [reduce_repeated_characters(word) for word in words]

# 6. Lemmatization (convert words to their base form)
words = [self.lemmatizer.lemmatize(word) for word in words]

# 7. Join the words back into a single string
return ' '.join(words)



Spam Classifier - Pipelines

# Data Preparation Pipeline

data_preparation_pipeline = IMBPipeline( |
(*cleaning', DataCleaner()),
('features extraction', FeatureExtractor()),
('text_preprocessing', TextPreprocessingTransformer())

1)



Spam Classifier - Pipelines

# Model Pipeline
features_conversion = ColumnTransformer(
transformers=[
('tfidf_vectorization', TfidfVectorizer(), 'content'),
('scaler', StandardScaler(), ['text_length', 'num_links', 'num_special_chars', 'capitalization_ratio', 'num_digits', 'num_repeated_chars', 'sentiment_score'])

1,
remainder="drop"',
verbose_feature_names_out=False,
sparse_threshold=0

)

model_pipeline = IMBPipeline(|
(*features_conversion', features_conversion),
('sampler', SMOTE(random_state=42)),
('dim_reduction', PCA(n_components=0.8, random_state=42)),
('classifier', Perceptron(random_state=42))



Spam Classifier - Nested Stratified Cross validation

sampler_configs = | all_configs = |
for configuration in itertools.product(sampler_configs,dim_reduction_configs,classifier_configs): Pa ra” |eterS
o EEERYS IMpERREE it 6 10 S # Merging of three dictionary into one
. all_parameters = []

‘sampler': [SMOTE(random_state=42)], ey eLem:.ent Hn conflgurat.lon:
'sampler__sampling_strategy': ['auto'] for item in element.items():
} all_parameters.append(item)
all_configs.append(dict(all_parameters)) # by dict(all_parameters) we create a dict from a list of pairs (key:value)
‘sampler': [RandomOverSampler(random_state=42)],
‘sampler__sampling_strategy': ['minority', ‘auto']

‘sampler': [RandomUnderSampler(random_state=42)],
'sampler__sampling_strategy': ['majority', @.5]

dim_reduction_configs =

‘dim_reduction': [None .
’ Execution

‘dim_reduction': [PCA(random_state=42)],
'dim_reduction__n_components': [0.5, 8.7, @.9] # Ensure class balance in training and test splits (Stratified Cross Validation)

inner_kfold = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)
outer_kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

classifier_configs =

(Classifier_eta0': loguniforn(e.061, 108), # Avoid overfitting with Nested Cross Validation to have unbiased estimate of model performance
classifier': [Perceptron{random_state=42)], i

‘classifier__max_iter': randint(1eee, 50e@), rs = RandomizedSearchCV(

‘classifier__class_weight': [None, 'balanced’

estimator = model_pipeline,

param_distributions=all_configs,
‘classifier': [LogisticRegression(solver='saga', random_state=42)],

‘classifier__C': loguniform(@.001, 100), n_iter=len(all_configs) * 51
‘classifier__penalty': ['11', '12'], n jObS=—1
‘classifier__max_iter': randint(1@ee, 5eee), - | Y
'classifier__class_weight': [None, 'balanced'] cv = lnner_ka].d,
7 scoring="'f1",
‘classifier': [KNeighborsClassifier()], random_state = 42
‘classifier__n_neighbors': randint(3, 20) )
‘classifier' : [RandomForestClassifier(random_state=42)], . . A P
'classifier n_estimators’ : randint(10, 5@9) # Perform cross—validation with stratified folds

scores = cross_validate(rs, X_train, y_train, scoring='f1l', cv=outer_kfold, return_estimator=True, verbose=3)



Spam Classifier - Model Selection

passthrough
None
RandomForestClassifier(n_estimators=170, random_state=42) {'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion’:

s': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split"':

tonic_cst': None, 'n_estimators': 170, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': @, 'warm_start': False}
fl_score: ©.9337349397590361

SMOTE( random_state=42)
None

RandomForestClassifier(n_estimators=274, random_state=42) {'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion':
s': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split"':

tonic_cst': None, 'n_estimators': 274, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': @, 'warm_start': False}
fl_score: ©0.9085365853658537

SMOTE( random_state=42)

None

RandomForestClassifier(n_estimators=409, random_state=42) {'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion':
s': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split"':

tonic_cst': None, 'n_estimators': 4@9, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': @, 'warm_start': False}
fl_score: 0.9244712990936556

passthrough

None

RandomForestClassifier(n_estimators=475, random_state=42) {'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion':
s': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split"':

tonic_cst': None, 'n_estimators': 475, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': @, 'warm_start': False}
fl_score: 0.9329268292682927

RandomOverSampler(random_state=42, sampling_strategy='minority")

None

LogisticRegression(C=55.51721685244721, class_weight='balanced', max_iter=9433,

'gini', 'max_depth': None, 'max_feature
2, 'min_weight_fraction_leaf': 0.0, 'mono

'gini', 'max_depth': None, 'max_feature
2, 'min_weight_fraction_leaf': 0.0, 'mono

'gini', 'max_depth': None, 'max_feature
2, 'min_weight_fraction_leaf': 0.0, 'mono

'gini', 'max_depth': None, 'max_feature
2, 'min_weight_fraction_leaf': 0.0, 'mono

random_state=42, solver='saga') {'C': 55.51721685244721, 'class_weight': 'balanced', 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ra

tio': None, 'max_iter': 9433, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': '12', 'random_state': 42, 'solver': 'saga',
False}
fl_score: 0.9345238095238095

'tol': 0.0001, 'verbose': @, 'warm_start':



Spam Classifier - Fine tuning best model

F1 on training set:0.9994162288382954, F1 on test set:0.916256157635468

# Reeplicating best model's pipeline structure

best_model_pipeline = IMBPipeline( [
('features_conversion', features_conversion),
('classifier',RandomForestClassifier())

1)

# Searching for params close to the range of the best model

params = {
'classifier__n_estimators' : randint(14@, 200), # Number of trees in the forest
'classifier__max_depth' : randint(5,30), # Controls the maximum depth of each tree. Limiting depth helps prevent overfitting
'classifier_ min_samples_split' : randint(l, 4), # The minimum number of samples required to split an internal node. Larger values prevent the model from learning overl
'classifier__min_samples_leaf' : randint(1, 3), # The minimum number of samples required to be at a leaf node. A smaller value allows the model to capture finer details
'classifier__max_features': ['sqrt', 'log2'], # The number of features to consider when looking for the best split. Lower values may help reduce overfitting
'classifier_ bootstrap': [True, Falsel, # Whether samples are drawn with replacement. Bootstrapping increases model robustness
'classifier_ class_weight': [None, 'balanced'] # Handling class imbalance by adjusting the weight of each class

b

rs_best = RandomizedSearchCV(
estimator = best_model_pipeline,
param_distributions = params,
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3),

n_iter=20,
scoring='f1',
n_jobs=-1,

random_state = 42

)

rs_best.fit(X_train, y_train)

Selected model: F1 on training set:0.9760765550239234, F1 on test set:0.913151364764268



Spam Classifier - Fine tuning best model

rs_best.best_estimator_

> Pipeline
> features_conversion: ColumnTransformer
i- tfidf_vectorization » scaler

§ v TfidfVectorizer é é v StandardScaler

TfidfVectorizer() StandardScaler()

év RandomForestClassifier

RandomForestC1a551f1er(bootstrap False, class_weight='balanced’, max_depth=26,§
| n_estimators=165) =



Spam Classifier - Learning curve
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Spam Classifier - Validation curve
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Spam Classifier - Validation curve
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Spam Classifier - Predicting Spam Comments Results

RESEARCH QUESTION: Has spam comments density shifted before, during and after the apple
event?

inputl_filename
input2_filename
input3_filename

COMMENTS_BEFORE_WITH_SPAM_FILENAME
COMMENTS_LIVE_WITH_SPAM_FILENAME
COMMENTS_AFTER_WITH_SPAM_FILENAME

before_spam_df = pd.read_csv(inputl_filename)
live_spam_df = pd.read_csv(input2_filename)
after_spam_df = pd.read_csv(input3_filename)

print(f'Number of spam comments before the event: {before_spam_df [before_spam_df['is_spam']==1]1["is_spam'l.count()} out of: {len(before_spam_df)} comments ({before_spam_df[’
print(f'Number of spam comments during the event: {live_spam_df[live_spam_df['is_spam']|== 'is_spam'].count()} out of: {len(live_spam_df)} comments ({live_spam_df['is_spam’
print(f'Number of spam comments after the event: {after_spam_df[after_spam_df['is_spam']==1]["'is_spam'].count()} out of: {len(after_spam_df)} comments ({after_spam_df["'is_sp

Number of spam comments before the event: 4030 out of: 93301 comments (4.32%).
Number of spam comments during the event: 30 out of: 1907 comments (1.57%).
Number of spam comments after the event: 6179 out of: 131381 comments (4.70%).



Spam Classifier - Predicting Spam Comments Results

RESEARCH QUESTION: What are the accounts that produce the most spam?

# Identify accounts that produce the most spam
def find_most_spam_accounts(df, event_label):
spam_by_account = df[df['is_spam'] == 1].groupby('account_id') ['is_spam'].count().reset_index()
spam_by_account = spam_by_account.sort_values(by='is_spam', ascending=False)
print(f"\nTop accounts producing the most spam {event_label}:")
print(spam_by_account.head())

# Find the top spam-producing accounts for each dataset
find_most_spam_accounts(before_spam_df, "before the event")
find_most_spam_accounts(live_spam_df, "during the event")
find_most_spam_accounts(after_spam_df, "after the event")

Top accounts producing the most spam before the event:
account_id is_spam

209  UC2m4WXfD_7C-byzIGa5n9Rw 15
3001 UCuACr427uH-_WUNn4MEiQxw 13
2520 UCLOmMFrzU4sQyGYQy2Ky7CQ 12
1003 UCJ-MHHBb6V5VNwSQo_YauyA 12
3280 UCzbv19d8CDwUWm1I_8_4V6Q 12

Top accounts producing the most spam during the event:
account_id is_spam

4  UCN20iPoQ51WNoPpIb-Zs5urw

15 UCoRCVQ6riUGZbTWczu4RINw

19 UCvyta-bVdS5C2p3sqr_4kjA

12 UCka-9LDcwDwZKEnjoKbZFVQ

3 UCEcNoM1ftQZbxzHQj iDMvTw

NNNWW

Top accounts producing the most spam after the event:
account_id is_spam

407 UC3vEFV1LG12C7UGhzrYRINw 25
1472 UCIBgsuvMtnBRyvsSNfpR6Aw 23
682  UC7SoQLmV1iBAcNJv@RIMqog 21
3888 UCLOmMFrzU4sQyGYQy2Ky7CQ 17

1605 UCJyt48GRehukCix-7dtmFgQ 16



Emotions Classifier - Structure
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Emotions Classifier - Hugging Face's Transformer

def classify_emotion(comment, emotion_classifier):
if isinstance(comment, str):
try:
result = emotion_classifier(comment, truncation=True, max_length=512) # 512 is the max length for the model's input
except Exception as e:
print(f"Error processing comment: {comment} - {e}")
return None

# Extract the label with the highest score
return result if result else None
return None

Use Hugging Face's Transformers to get emotions from text

def classify_emotions(input_filename, output_filename):
df = pd.read_csv(input_filename, dtype={'content': str})

# Load the emotion detection pipeline with a pre-trained model for emotion detection
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") # I choose this model because it's based on DistilBERT, which

# Apply the classifier and create the emotion column
df['emotion'] = df['content'].apply(lambda comment: classify_emotion(comment, emotion_classifier))

# Save
df.to_csv(output_filename, index=False)

input_filename_before = COMMENTS_BEFORE_WITH_SPAM_FILENAME
input_filename_live = COMMENTS_LIVE_WITH_SPAM_FILENAME
input_filename_after = COMMENTS_AFTER_WITH_SPAM_FILENAME
output_filename_hefore = COMMENTS_WITH_EMOTION_BEFORE_FILENAME
output_filename_live = COMMENTS_WITH_EMOTION_LIVE_FILENAME
output_filename_after = COMMENTS_WITH_EMOTION_AFTER_FILENAME

# Execute

classify_emotions(input_filename_before, output_filename_before)
classify_emotions(input_filename_live, output_filename_live)
classify_emotions(input_filename_after, output_filename_after)



Emotions Classifier - Emotion Classification Tuning / Extraction

def separate_label_score(emotion_dic):
if not pd.isna(emotion_dic):
emotion_dic = str(emotion_dic).replace("'",'"")
emotion_dic = json.loads(emotion_dic)

label = emotion_dic (0] ['label’
score = emotion_dic[@] ['score’

if score <= 0.3: # Create neutral labels and scores -—

label = ‘neutral' Classified as 'neutral' low confidence scores

score = l-score

return label, score
else:
return 'unknown', @

def extract_emotion_data(input_filename, output_filename):
df = pd.read_csv(input_filename)

# Clean emotion column

emotion_columns = df['emotion'].apply(separate_label_score)

df[['emotion_label', 'emotion_score' = pd.DataFrame(emotion_columns.tolist(), index=df.index)
df = df.drop('emotion', axis=1) # Delete original column

# Save
df.to_csv(output_filename, index=False)

input_filename_live = COMMENTS_WITH_EMOTION_LIVE_FILENAME
input_filename_before = COMMENTS_WITH_EMOTION_BEFORE_FILENAME
input_filename_after = COMMENTS_WITH_EMOTION_AFTER_FILENAME
output_filename_live = COMMENTS_WITH_EMOTIONS_CLEANED_LIVE FILENAME
output_filename_before = COMMENTS_WITH_EMOTIONS_CLEANED_ BEFORE_FILENAME
output_filename_after = COMMENTS_WITH_EMOTIONS_CLEANED_AFTER_FILENAME

# Execute

extract_emotion_data(input_filename_before, output_filename_before)
extract_emotion_data(input_filename_live, output_filename_live)
extract_emotion_data(input_filename_after, output_filename_after)



Data Analysis - Wordcloud

Most Frequent Words
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Data Analysis - Extracting insights from wordcloud

RESEARCH QUESTION: What words are most associated with the topic? Can we identify iphone
16 features from the most used ones?

# Visualizing top 10@ topics
wordcloud = WordCloud(max_words=100).generate(text)
wordcloud.words_

{'iphone': 1.0,
'apple': 0.950666186532229,
'phone': ©.9503060857039971,
'pro max': 0.7658144280398511,
'iphone pro': 0.482415076221342,
'one': 0.3754651302364662,
‘samsung': ©0.3226503420957868,
'bro': ©.3215700396110911,
"thats': ©.3179690313287721, .
'video': 0.301884527667747, |dentified features
"think': 0.24846957148001442,
'u': 0.23862681550834233,
'even': 0.2381466810706998,
'year': 0.23562597527307647,
'camera': 0.234785740007202,
'price': 0.23454567278838076,
"thing': 0.21594046332973232,
'better': 0.21594046332973232,
"time': 0.2093386148121474,
'make': 0.20873844676509423,
'look': 0.20669787540511342,
'design': ©.20633777457688152,

'people': 0.20597767374864961, HI B ?
'lol': 0.20393710238866883, < Stl” In use:




Data Analysis - Extract Emotion per Topic

Target interesting features

# Manually selecting topics for further analysis
# iphone takes sentiment from iphone pro and pro max too

' ' 'INTERESTING_TOPICS = ['iphone', 'pro max', 'iphone pro', 'apple', 'android', 'samsung', 'camera', 'price', 'screen', 'battery', 'ultra', 'money', 'design', 'button', ‘'upg
'watch', 'galaxy', 'nokia', 'ipad', 'change', 'display', 'glass', 'protector', 'titanium', 'features', 'google', 'color', 'worth', 'update', ‘'xiaomi'

'buying', 'redmi', 'vision', 'expensive', 'support', 'intelligence', 'software', 'release', 'launch', 'quality', 'airpods', 'games', 'innovation',

'storage’

1

INTERESTING_FEATURES=['camera', 'price', 'money', 'screen', 'battery', 'design', 'case', 'display', 'titanium', ‘'color', 'software', 'quality', 'innovation', 'storage' ~

4 - Extract emotions per topic

def extract_emotion_per_topic(input_filename, output_filename):
df = pd.read_csv(input_filename)
topic_emotions =

for topic in INTERESTING_FEATURES:
filtered_df = df[df['content'].str.contains(topic, case=False, na=False)
emotion_counts =
emotions =
count = @

for _, row in filtered_df.iterrows():
count += 1

if row('emotion_label'] in emotions:
emotions(row('emotion_label!’ += 1
else:

emotions[row['emotion_label’ = 1

for emotion_key in emotions.keys():
emotions [emotion_key] = emotions!emotion_keyl/count

topic_emotions|topic! = emotions

with open(output_filename, 'w') as f:
json.dump(topic_emotions, f)



Data Analysis - Convert Emotions to Sentiment

5 - Analyze sentiment

def convert_emotion_to_sentiment_label(emotion):
positive_emotions = ['joy'
neutral_emotions = ['neutral', 'surprise’ <+

negative_emotions = ['anger', 'disgust', 'fear', 'sadness' Set Ilsurprise" aS "neutralu because it Can be bOth
if emotion in positive_emotions: positive Or negative

return 'positive'

elif emotion in neutral_emotions:
return ‘neutral’

elif emotion in negative_emotions:
return 'negative’

def convert_emotions_to_sentiment_df(input_filename, output_filename):
df = pd.read_csv(input_filename)
df = df.rename(columns={'emotion_label':"'sentiment', 'emotion_score':'sentiment_score'})
df ['sentiment'] = df['sentiment’'].apply(convert_emotion_to_sentiment_label)

df.to_csv(output_filename)
def convert_emotions_to_sentiment(input_filename, output_filename):

with open(input_filename, 'r') as f:
topic_emotions = json.load(f)

positive_emotions = ['joy'
neutral_emotions = ['neutral', 'surprise'
negative_emotions = ['anger', 'disgust', 'fear', 'sadness'

topics_sentiment =

for topic_key in topic_emotions.keys():
topic_sentiment = {'positive':@, 'neutral':@, 'negative':@

for emotion_key in topic_emotions [topic_key].keys():
if emotion_key in positive_emotions:
topic_sentiment['positive']| += topic_emotions|topic_key] [emotion_key
elif emotion_key in neutral_emotions:
topic_sentiment|['neutral'] += topic_emotions|[topic_key] [emotion_key
elif emotion_key in negative_emotions:
topic_sentiment['negative'] += topic_emotions|topic_key] [emotion_key

topics_sentiment [topic_key] = topic_sentiment

with open(output_filename, 'w') as f:
json.dump(topics_sentiment, f)



Data Analysis - Sentiment per topic

RESEARCH QUESTION: What sentiment is associated with iphone 16 features?

RESEARCH QUESTION: Have feature sentiments shifted before, during and after the apple
event?



Data Analysis - Results

Negative sentiment scores by topic
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Data Analysis - Results

Positive sentiment scores by topic
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Data Analysis - Results

Negative sentiment scores by topic
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Data Analysis - Results

Positive sentiment scores by topic
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Anomalies Classifier - Structure

(
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Anomalies Classifier - Cleaning and Merging

Account data:

<class 'pandas.core.frame.DataFrame'>
Index: 190397 entries, @ to 190455
Data columns (total 8 columns):

# Column Non-Null Count Dtype

@ account_id 190397 non-null object
1 title 190397 non-null object
2 account_name 190397 non-null object
3 published_at 190397 non-null object
4 view_count 190397 non-null int64

5 subscriber_count 190397 non-null float64
6 hidden_subscriber_count 190397 non-null bool

7  video_count 190397 non-null int64

dtypes: bool(1l), float64(1l), int64(2), object(4)
memory usage: 11.8+ MB
None

Comment data:

<class 'pandas.core.frame.DataFrame'>
Index: 131079 entries, @ to 131380
Data columns (total 17 columns):

# Column Non-Null Count Dtype
@ Unnamed: @ 131079 non-null int64
1 content 131079 non-null object
2  text_length 131079 non-null int64
3 num_links 131079 non-null int64
4 num_special_chars 131079 non-null int64
5 capitalization_ratio 131079 non-null float64
6 num_digits 131079 non-null 1int64
7 num_repeated_chars 131079 non-null 1int64
8 sentiment_score 131079 non-null float64
9 is_spam 131079 non-null int64
10 account_id 131079 non-null object
11 comment_id 131079 non-null object
12 video_id 131079 non-null object
13 original_comment_text 131079 non-null object
14 1like_count 131079 non-null float64
15 sentiment 131079 non-null object
16 sentiment_score 131079 non-null float64

dtypes: float64(4), int64(7), object(6)
memory usage: 18.0+ MB
None

<class 'pandas.core.frame.DataFrame'>
Index: 131035 entries, @ to 131078
Data columns (total 24 columns):

# Column Non-Nul
® Unnamed: @ 131035
1 content 131035
2 text_length 131035
3 num_links 131035
4 num_special_chars 131035
5 capitalization_ratio 131035
6 num_digits 131035
7 num_repeated_chars 131035
8 sentiment_score 131035
9 is_spam 131035
18 account_id 131035
11 comment_id 131035
12 video_id 131035
13 original_comment_text 131035
14 like_count 131035
15 sentiment 131035
16 sentiment_score 131035
17 title 131035
18 account_name 131035
19 published_at 131035
20 view_count 131035
21 subscriber_count 131035
22 hidden_subscriber_count 131035
23 video_count 131035

1 Count
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

inte4
float64
inte4
inte4
float64
inte4
object
object
object
object
floatb4
object
float64d
object
object
datetime64[ns]
float64
floate4d
object
float64d

dtypes: datetime64[ns] (1), float64(7), int64(7), object(9)

memory usage: 25.0+ MB



Anomalies Classifier - Feature Extraction

features_X.info()

# Extract features from the accounts dataset
features_X = pd.DataFrame()
features_X['account_id'] = merged_df['account_id']
features_X['video_id'] = merged_df['video_id']

# Convert relevant columns to numeric

features_X!['video_count'] = pd.to_numeric(merged_df['video_count'], errors='coerce').fillna(@)
features_X['view_count'] = pd.to_numeric(merged_df['view_count'], errors="coerce').fillna(@)
features_X['subscriber_count'] = pd.to_numeric(merged_df['subscriber_count'], errors='coerce').fillna(@)

merged_df['published_at'] = pd.to_datetime(merged_df['published_at'], errors='coerce') # Ensure 'published_at' is in datetime format
features_X['account_age_days'] = (datetime.now() - merged_df|['published_at']).dt.days

features_X!['upload_frequency'] = features_X|['video_count'] / (features_X['account_age_days'] + 1)
features_X['view_to_subscriber_ratio'] = features_X['view_count'] / (features_X['subscriber_count'] + 1)
features_X['subscriber_to_video_ratio'] = features_X['subscriber_count'] / (features_X['video_count'] + 1)
features_X|['view_per_video'] = features_X['view_count'] / (features_X['video_count'] + 1)

features_X['title_length'] = merged_df['title'].apply(lambda x: len(str(x)))

#features_X['description_length'] = merged_df['description'].apply(lambda x: len(str(x)))

# Extract features from the comments dataset
# Calculate comment count per account
comment_counts = merged_df.groupby('account_id').size().reset_index(name="comment_count")

# Calculate comment length for each comment
merged_df['comment_length'] = merged_df['original_comment_text'].apply(lambda x: len(str(x)))

# Calculate average comment length per account
avg_comment_length = merged_df.groupby('account_id") ['comment_length'].mean().reset_index(name='avg_comment_length")

# Calculate like-to—-comment ratio per account
like_comment_ratio = merged_df.groupby('account_id")['like_count'].sum() / comment_counts.set_index('account_id"')["'comment_count"']

like_comment_ratio = like_comment_ratio.reset_index(name='1like_to_comment_ratio')

# Calculate spam count per account
spam_count = merged_df.groupby('account_id')['is_spam'].sum().reset_index(name="'spam_count')

# Calculate sentiment count (positive/neutral/negative) per account

<class 'pandas.core.frame.DataFrame'>

Index: 95847 entries, @ to 131034

Data columns (total 19 columns):

#

|
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Column

account_id

video_id

video_count

view_count
subscriber_count
account_age_days
upload_frequency
view_to_subscriber_ratio
subscriber_to_video_ratio
view_per_video
title_length
comment_count
avg_comment_Llength
like_to_comment_ratio
spam_count
negative_sentiment_count
neutral_sentiment_count
positive_sentiment_count
spam_ratio

Non-Null Count Dtype
95847 non-null object
95847 non-null object
95847 non-null float64
95847 non-null float64
95847 non-null float64
95847 non-null int64
95847 non-null float64
95847 non-null floate4
95847 non-null float64
95847 non-null float64
95847 non-null int64
95847 non-null int64
95847 non-null float64
95847 non-null float64
95847 non-null int64
95847 non-null int64
95847 non-null int64
95847 non-null int64
95847 non-null float64

dtypes: float64(10), int64(7), object(2)
memory usage: 14.6+ MB

sentiment_count = merged_df.groupby(['account_id', 'sentiment']).size().unstack(fill_value=0).reset_index() # Unstack to separate resulted column (since groupby is by 2 valu

sentiment_count.columns = ['account_id', 'negative_sentiment_count', 'neutral_sentiment_count', 'positive_sentiment_count'] # Rename resulted column

# Merge features

features_X = features_X.merge(comment_counts, on='account_id', how='left")
features_X = features_X.merge(avg_comment_length, on='account_id', how='left')
features_X = features_X.merge(like_comment_ratio, on='account_id', how='left')
features_X = features_X.merge(spam_count, on='account_id', how='left"')
features_X = features_X.merge(sentiment_count, on='account_id', how='1left")

# Calculate spam ratio per account
features_X['spam_ratio'] = features_X['spam_count'] / features_X['comment_count']



Anomalies Classifier - Pipelines

3 - Prepare pipelines

# Model Pipeline
features_conversion = ColumnTransformer(

('scaler', StandardScaler(), ['account_age_days', 'upload_frequency', 'view_to_subscriber_ratio', 'subscriber_to_video_ratio', 'view_per_video', 'title_length', 'commenf
)

model_pipeline = Pipeline(
('features_conversion', features_conversion),
('classifier', IsolationForest(n_estimators=100, contamination=0.05, random_state=42))



Anomalies Classifier - Anomaly Detection Phase

# Prepare final df
final_df = features_X[['account_id', 'video_id', 'spam_count', 'negative_sentiment_count', 'neutral_sentiment_count', 'positive_sentiment_count'

# Prepare feature matrix
X = features_X[['account_age_days', 'upload_frequency', 'view_to_subscriber_ratio', 'subscriber_to_video_ratio', 'view_per_video', 'title_length', 'comment_count', 'avg_comm

# Fit the model
mode1_pipeline.fit(X)
anomaly_scores = model_pipeline.decision_function(X)



Anomalies Classifier - "Hyperparameter Tuning”

# Plot the distribution of anomaly scores
plt.hist(anomaly_scores, bins=50, color="'blue', edgecolor='black')
plt.title('Anomaly Score Distribution')

plt.xlabel('Anomaly Score')

plt.ylabel('Frequency')

plt.show()

Anomaly Score Distribution
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Anomalies Classifier - Assign Prediction (and output file)

threshold = =0.1

# Classify points as anomalous if their score is below the threshold
final _df = final_df.copy() # Avoid using a view of the dataset before loc
final_df.locl:, 'is_anomalous'

final_df.head()

account_id
0 UCgEAEygar_JKymjaBlmZpSw
1 UCszWY8pgNZASj7qaQY2b5UQ
2 UCImAcrwg6ddcpD3N7scfgSQ
3 UCxcf_ul15ynwQsf7xju34uw
4

UCYRALNCjFReh61pimbPoqCg

final_df.to_csv(ANOMALOUS_ACCOUNTS_AFTER_FILENAME, index=False)

= anomaly_scores < threshold

video_id spam_count negative_sentiment_count neutral_sentiment_count positive_sentiment_count

h3BKjZMGolw
h3BKjZMGolw
h3BKjZMGolw
h3BKjZMGolw

h3BKjZMGolw

0

S O

0

1

0

c O

1

0

is_anomalous
False
False
False
False

False



Network Science - Before

order: 4190

size: 55778




Network Science - After

order: 7789
size: 989232

There's an evident increase in engagement in the graph
obtained after the event, the size increases exponentially
as more and more people comment on the same videos

.

.




Network Science - Degree Probability Distribution

Degree Probability Distribution of graphs
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Network Science - Centrality (Pearson Correlation)

Pearson correlation before event
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Network Science - Centrality

Degree Centrality top nodes before the event: [('UCtLU@ghH04J3tsylHrltLkQ', ©.359), ('UCDy400IH@dEp@lk23Bhetzg', 0.1666), ('UCDVUh8E7QVDBs6wNWKewSfw', ©.1418), ('UCalY2ddRg
xn0bnsgFh9Ms2g', 0.138), ('UCoVQZdNBZWedbdyf6lylQmA', 0.1299)]

Degree Centrality top nodes after the event: [('UCLtRxV85jYvIVm-XaFths7A', ©.4138), ('UCWBgism_fFLIuN52ggvePgA', 0.4023), ('UCQmZ-wOK2fJyl0jn20u6sVg', ©.3905), ('UCiex9LaxK
UBrwLotY5@ngSQ', ©.3811), ('UC5vz19CfEaZxDjeKXadySsw', 0.3801)]

Closeness Centrality top nodes before the event: [('UCtLU@ghH0o4J3tsylHrltLkQ', @.5275322920764226), ('UCDVUhBE7QVDBs6wNWKewSfw', 0.4472912674086531), ('UCDy400IH@dEp@1k23Bh
etzg', 0.4459611979726715), ('UCoVQZdNBZW@dbdyf6lylQmA', 0.4449688254218607), ('UCalY2ddRgxnObnsgFh9Ms2g', ©.4330830019055988)]

Closeness Centrality top nodes after the event: [('UCLtRxV85jYvIVm—-XaFths7A', ©.588748320463633), ('UCWBgism_fFLIUN52ggvePgA', ©.5813450092977903), ('UCQmZ-wOK2fJyl0jn20u6bs
Vg', ©.5748394387865312), ('UCiex9LaxKUBrwLotY5@ngSQ', ©.5729249398423889), ('UC5vz19CfEaZxDjeKXadySsw', @.5717735099563334)]

Betweenness Centrality top nodes before the event: [('UCtLU@ghHo4J3tsylHrltLkQ', ©.2618187993486857), ('UCDy40@0IHOdEp@1k23Bhetzg', 0.0610060398418432), ('UCQgRXb3-WwryxUX9od
Uelilww', 0.04718718358793657), ('UCovQZdNBZwodbdyfelylQmA', ©.043887397119769925), ('UCDVUh8E7QVDBs6wNWKewSfw', 0.04055693889124225)]

Betweenness Centrality top nodes after the event: [('UCiex9LaxKUBrwLotY5@ngSQ', @.057438524723535674), ('UCWBgism_fFLIuN52ggvePgA', ©.04951136037563727), ('UCLtRxV85jYvIVm-
XaFths7A', 0.04288429765788693), ('UCIwjWjde_17amecXUpDWe@g', 0.04171723767324198), ('UCIDfIEKqI1lsxmI_3SYCGMw', 0.024692728704489162)]
Eigenvector Centrality top nodes before the event: [('UCtLU@ghHo4J3tsylHrltLkQ', ©.22858210616225166), ('UCalY2ddRgxnObnsgFh9Ms2g', ©.1363521831182538), ('UCDy40@0IHAdEp@1k2

3Bhetzg', 0.13573457297049912), ('UCoVQZdNBZWodbdyf6lylQmA', ©0.12427504230438396), ('UC7tDR1svtHPvxv3aiBAdr4g', ©.12056586657441391)]

Eigenvector Centrality top nodes after the event: [('UCQmZ-wOK2flyl0jn20u6sVg', 0.0480737178670853), ('UCLtRxV85jYvIVm-XaFths7A', ©.047898611232181955), ('UCWBgism_fFLIuN52
ggvePgA', 0.047685271643825355), ('UC5vz19CfEaZxDjeKXadySsw', 0.04764677393080773), ('UCBpHHVuYafz6Ve-5Xp@oodA', ©0.04737543140084343)]

The values differs between different centrality measures but the rankings looks similar. There are accounts that
appear in the top 5 of every centrality measure



Network Science - Centrality (Kendall Correlation)
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Network Science - Spam in central nodes

RESEARCH QUESTION: Are the nodes central because they produce spam or because of
engagement?

# Chosen centrality measure: Eigenvector
top_central_nodes_before = node_e_centr_before[:100
top_central_nodes_after = node_e_centr_after[:100

# Extract node IDs
top_central_node_ids_before = [node[@! for node in top_central_nodes_before
top_central_node_ids_after = [nodel@] for node in top_central_nodes_after

# Count how many of the top 10@ nodes have spam_count > @
spam_creators_count_before = sum(1 for node in top_central_node_ids_before if g_before.nodes[nodel.get('spam_count', @) > @)
spam_creators_count_after = sum(1 for node in top_central_node_ids_after if g_after.nodes [node].get('spam_count', @) > @)

print(f'Spam producers (at least 1 spam message) in the top {len(top_central_nodes_before)} central nodes: {spam_creators_count_before} ({(spam_creators_count_before/len(top
print(f'Spam producers (at least 1 spam message) in the top {len(top_central_nodes_after)} central nodes: {spam_creators_count_after} ({(spam_creators_count_after/len(top_ce

Spam producers (at least 1 spam message) in the top 100 central nodes: 28 (28.00%)
Spam producers (at least 1 spam message) in the top 10@ central nodes: 21 (21.00%)



Network Science - Transitivity

Before Event Data vs Erdés-Rényi

® After Event network
Erdés-Rényi network
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Transitivity before the event: 0.324423206175201

Network Science - TransitiVItY ... icivicy after the event: 0.6902537241087035
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Network Science - Attribute Assortativity

RESEARCH QUESTION: Are spam generator accounts likely to comment on the same videos
(target similar videos)? What about anomalous accounts? what about accounts with similar

sentiment behaviour?

Before event —> Attribute assortativity for "most_frequent_sentiment": 0.012042218057111665
After event —> Attribute assortativity for "most_frequent_sentiment": 0.0026089758633647702

Before event —> Attribute assortativity for "is_spam_creator": 0.032345245503425143
After event —> Attribute assortativity for "is_spam_creator": 0.0021472813611196203

Before event —> Attribute assortativity for "is_anomalous": -0.016925227198739467
After event -> Attribute assortativity for "is_anomalous": -0.0022852026211761327



Network Science - Assortativity Mixing Matrix

Mixing matrix "most_frequent_sentiment"” attribute before event Mixing matrix "most_frequent_sentiment" attribute after event
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Network Science - Community Detection

Modularity: 0.6004971897940627
Number of detected communities before the event: 128

Louvain Community Detection Before The Event
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Modularity: 0.4915642815387966
Number of detected communities after the event: 99

Louvain Community Detection After The Event
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Data Analysis - Communities spam/sentiment analysis

RESEARCH QUESTION: Is the spam percentage in the biggest communities higher than
the general spam percentage?

RESEARCH QUESTION: How is the sentiment distributed across the biggest communities?



Network Science - Communities sp

Spam and Sentiment percentages in the top 10 communities before the event:

Community 4 (Size: 1010):
Spam Percentage: 5.37%
Positive: 11.58%
Negative: 20.92%
Neutral: 67.50%

Community 2 (Size: 714):
Spam Percentage: 5.41%
Positive: 12.05%
Negative: 21.48%
Neutral: 66.47%

Community 6 (Size: 519):
Spam Percentage: 2.07%
Positive: 8.03%
Negative: 20.71%
Neutral: 71.26%

Community 1 (Size: 366):
Spam Percentage: 3.32%
Positive: 9.10%
Negative: 20.75%
Neutral: 70.15%

Community 8 (Size: 310):
Spam Percentage: 6.16%
Positive: 10.27%
Negative: 23.01%
Neutral: 66.72%

Community 3 (Size: 223):
Spam Percentage: 4.75%
Positive: 8.46%
Negative: 21.51%
Neutral: 70.03%

Community 9 (Size: 195):
Spam Percentage: 4.08%
Positive: 18.42%
Negative: 11.71%
Neutral: 69.87%

Community 12 (Size: 194):
Spam Percentage: 5.89%
Positive: 15.06%
Negative: 13.58%
Neutral: 71.36%

Community @ (Size: 103):
Spam Percentage: 3.65%
Positive: 6.85%
Negative: 20.55%
Neutral: 72.60%

Community 10 (Size: 8@):
Spam Percentage: 5.43%
Positive: 4.07%
Negative: 26.70%
Neutral: 69.23%

Overall spam percentage in the graph: 4.41%

am/sentiment analysis

Spam and Sentiment percentages in the top 1@ communities after the event:

Community @ (Size: 2423):
Spam Percentage: 6.22%
Positive: 12.12%
Negative: 22.16%
Neutral: 65.72%

Community 1 (Size: 1747):
Spam Percentage: 4.78%
Positive: 10.57%
Negative: 20.48%
Neutral: 68.96%

Community 2 (Size: 820):
Spam Percentage: 6.18%
Positive: 10.89%
Negative: 23.24%
Neutral: 65.87%

Community 4 (Size: 756):
Spam Percentage: 6.21%
Positive: 11.28%
Negative: 21.92%
Neutral: 66.80%

Community 3 (Size: 595):
Spam Percentage: 3.49%
Positive: 10.42%
Negative: 22.80%
Neutral: 66.78%

Community 5 (Size: 519):
Spam Percentage: 6.51%
Positive: 10.13%
Negative: 24.86%
Neutral: 65.01%

Community 6 (Size: 514):
Spam Percentage: 6.92%
Positive: 15.35%
Negative: 14.445%
Neutral: 70.21%

Community 11 (Size: 66):
Spam Percentage: 4.56%
Positive: 12.86%
Negative: 21.16%
Neutral: 65.98%

Community 1@ (Size: 49):
Spam Percentage: 5.85%
Positive: 15.20%
Negative: 20.47%
Neutral: 64.33%

Community 15 (Size: 23):
Spam Percentage: 1.85%
Positive: 5.56%
Negative: 12.96%
Neutral: 81.48%

Overall spam percentage in the graph: 4.70%
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