Non ci siamo concentrati sull’aspetto di come funziona I'algoritmo ma abbiamo voluto
portare una cosa diversa dal solito, usandolo e cercando di trarre delle conclusioni
interessanti dal suo utilizzo. Piu importante per noi &€ dimostrare che il dolore non &€ come le
altre espressioni ma ha una componente psicologica molto piu evidente. Si notera infatti che
le reazioni cambiano molto in base alla cultura, all’esperienza ed al soggetto che lo sta
provando

Software
1- clonazione della repository da github.

[1 !git clone https://github.com/misbah4@64/facial_expressions.git

Cloning into 'facial_expressions'...

remote: Enumerating objects: 29, done.

remote: Counting objects: 100% (29/29), done.

remote: Compressing objects: 10@% (29/29), done.

remote: Total 14243 (delta 12), reused @ (delta @), pack-reused 14214
Receiving objects: 100% (14243/14243), 240.06 MiB | 34.46 MiB/s, done.
Resolving deltas: 100% (235/235), done.

Checking out files: 100% (14004/14004), done.

2- accesso alla cartella di lavoro e creazione delle cartelle di supporto all’algoritmo.

%cd facial_expressions/
smkdir —p data_set/{anger,happy,neutral,sad}

/content/facial_expressions

3-smistamento delle immagini nel database principale nelle cartelle create nel passaggio
precedente.

[1 import cv2
with open('happy.txt','r"') :
img = [line.strip() for line in f]
for image in img:

loadedImage = cv2.imread('"images/"+image)
cv2.imwrite("data_set/happy/"+image, loadedImage)
print("done writing")

done writing

4-individuazione volti nelle foto smistate e salvataggio volti con identificativo assegnato.
Salvataggio nella cartella dataset.

import cv2

with open('happy.txt','r') as f:
images = [line.strip() for line in fl]

face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

3 1 (

\n Enter Emotion id end p <return> ==> ')

count = 0@
for image in images:
img = cv2.imread('data_set/happy/"+image)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray, 1.3, 5)

for (x,y,w,h) in faces:

cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
count += 1

8] 1ata

cv2.imwrite('"dataset/User." + str(face_i ." + str(count) + ".jpg", grayly:y+h,x:x+w]

the ed image into
print("\n Done creating face data")

Enter user id end press <return> ==> 1

Done creating face data

5 - Fase di training. Avviare questa fase solo dopo che tutte le espressioni sono state
preparate nelle fasi precedenti 3 e 4. [l modello verra salvato nella cartella “trainer”. Se tutto
andra a buon fine si vedra in output la frase "exiting program”

import cv2
import numpy as np
from PIL import Image
import os
path = 'dataset’
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml");
def getImagesAndLabels(path):
imagePaths = [os.path.join(path,f) for f in os.listdir(path)]
faceSamples=[]
ids = [1

for imagePath in imagePaths:

PIL_img = Image.open(imagePath).convert('L")
img_numpy = np.array(PIL_img, 'uint8')

id = int(os.path.split(imagePath) [-1].split(".")[1])
faces = detector.detectMultiScale(img_numpy)

for (x,y,w,h) in faces:
faceSamples.append(img_numpy [y:y+h, x: x+w])
ids.append(id)
return faceSamples,ids
print ("\n [INFO] Training faces....")

faces,ids = getImagesAndLabels(path)
recognizer.train(faces, np.array(ids))

recognizer.write('trainer/trainer.yml"')

print("\n [INFO] {@} Emotions trained. Exiting Program".format(len(np.unique(ids))))

[INFO] Training faces....

[INFO] 2 faces trained. Exiting Program

6- inserimento immagine per testare le capacita di riconoscimento dell’algoritmo.

© import cv2
import numpy as np
import os

recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml')

cascadePath = "haarcascade_frontalface_default.xml1"
faceCascade = cv2.CascadeClassifier(cascadePath);

font = cv2.FONT_HERSHEY_SIMPLEX

#iniclate id counter
id = 0

Emotions related to ids: example ==> Anger: id=@, etc
names = ['Anger', 'Happy', 'None', 'None', 'None', 'None']

Initialize and start realtime video capture
cam = cv2.VideoCapture(0)

cam.set(3, 640) # set video widht

cam.set(4, 480) # set video height

Define min window size to be recognized as a face
minW = @.1lxcam.get(3)
minH = @.1xcam.get(4)

ret, img =cam.read()
img = cv2.imread("dwayne.jpg")
img = cv2.flip(img, -1) # Flip vertically

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),

for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (@,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
Check if confidence is less them 100 ==> "@" is perfect match
if (confidence < 100):
id = names[id]
confidence = " {0}%".format(round(100 - confidence))
else:
id = "unknown"
confidence = " {0}%".format(round(10@ - confidence))

cv2.putText(img, str(id), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)

cv2.imwrite("dwayne_johnson.jpg",img)
print("\n [INFO] Done detecting and Image is saved")

cam.release()
cv2.destroyAllWindows ()

[INFO] Done detecting and Image is saved

7- porzione di codice necessaria per mostrare il risultato ingrandito.

© import cv2
import matplotlib.pyplot as plt
%matplotlib inline

image = cv2.imread("dwayne_johnson.jpg")
height, width = image.shape[:2]
resized_image = cv2.resize(image, (3xwidth, 3xheight), interpolation = cv2.INTER_CUBIC)

fig = plt.gcf()

fig.set_size_inches(18, 10)

plt.axis("off")

plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
plt.show()

v @ | import cv2
import matplotlib.pyplot as plt
%matplotlib inline

image = cv2.imread("elon_musk.jpg")
height, width = image.shapel[:2]
resized_image = cv2.resize(image, (3*width, 3xheight), interpolation = cv2.INTER_CUBIC)

fig = plt.gcf()

fig.set_size_inches(18, 10)

plt.axis("off")

plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
plt.show()

import cv2
import matplotlib.pyplot as plt
smatplotlib inline

image = cv2.imread("neutral_result.jpg")
height, width = image.shapel[:2]
resized_image = cv2.resize(image, (3kwidth, 3xheight), interpolation = cv2.INTER_CUBIC)

fig = plt.gcf()

fig.set_size_inches(18, 10)

plt.axis("off")

plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
plt.show()

La situazione si diventa complicata ed interessante quando si prova ad insegnare
all'algoritmo un’espressione per la quale non é stato testato: I'espressione del dolore.

Database

Per insegnare una nuova espressione & necessario innanzitutto trovare un buon database.
Dopo aver trovato le immagini delle espressioni che si vogliono insegnare, si procede
creando un piccolo programma in java che estrae tutti i nomi delle immagini contenute nel
database. Il risultato servira per creare il file di testo che serve per smistare il database
principale nelle varie cartelle delle espressioni. Si importa creando un file pain.txt e vi si
inseriscono tutti i nomi delle immagini del database. Si aggiungono, poi, le immagini stesse
al database interno al codice.

Test Riconoscimento Dolore

Provando ad avviare le immagini usando lo stesso algoritmo prima e dopo il riconoscimento
del dolore, si pud notare che questo comincera a confondersi e qualsiasi espressione gli si
presenti, verra riconosciuta come espressione di dolore.

© import cv2

import matplotlib.pyplot as plt
smatplotlib inline

image = cv2.imread('dwayne_johnson.jpg")
height, width = image.shapel[:2]
resized_image = cv2.resize(image, (3xwidth, 3xheight), interpolation = cv2.INTER_CUBIC)

fig = plt.gcf()

fig.set_size_inches(18, 10)

plt.axis("off")

plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
plt.show()

v @) import cv2

import matplotlib.pyplot as plt

%matnlotlib inline
Esegui cella (3/Ctrl+Enter)
cella eseguita dall'ultima modifica)n_musk.jpg")

shape[:2]

eseguita da Diego Turri ;ize(image, (3*width, 3xheight), interpolation = cv2.INTER_CUBIC)
11:33 (0 minuti fa)
esecuzione completata tra 3.265 s

fig.set_size_inches(18, 1@)

plt.axis("off")

plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
plt.show()

° import cv2
import matplotlib.pyplot as plt
%matplotlib inline

image = cv2.imread("neutral_result.jpg")
height, width = image.shapel:2]
resized_image = cv2.resize(image, (3xwidth, 3xheight), interpolation = cv2.INTER_CUBIC)

fig = plt.gcf()

fig.set_size_inches(18, 10)

plt.axis("off")

plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
plt.show()

Si pensava che questo problema fosse dovuto dall'impurita dei dati interni al database. Se si
andasse a guardare le immagini del database preso in considerazione, si pud vedere con
facilita che i soggetti a volte ridono ed a volte sembrano arrabbiati. Questo non avviene a
causa di un impurita nel database poiché i soggetti stavano provando effettivamente dolore
in quel momento, ma deriva piu da una complessita evidente nell’espressione di dolore.
Infatti anche un essere umano faticherebbe nel riconoscere come dolore alcune espressioni
presenti del database. Eccone alcuni esempi:

Si pud dire che nel campo del dolore ¢ difficile trovare molte informazioni, infatti non &
possibile trovare un algoritmo che rilevi direttamente il dolore ma & possibile addestrarne
uno per il riconoscimento delle espressioni meno complesse come felicita e tristezza. Inoltre
il database non contiene immagini di persone che stanno provando dolore in quel momento
ma piuttosto immagini di persone che lo stanno simulando, ed & I'unico database accessibile
di questo tipo. Probabilmente la simulazione del dolore introduce ulteriore rumore
nell’espressione da riconoscere, ma il fatto che 'algoritmo non abbia funzionato ha
permesso di notare due cose importanti:

e il dolore non & univoco, ma dipende molto da tanti fattori intrecciati tra loro e
percio anche I'espressione del dolore risulta confusa a volte. Anche se esiste
un’espressione universale del dolore, le persone reagiscono in maniera molto
diversificata agli stimoli o comunque pensano alla reazione simulata in
maniera molto diversa tra loro.

e [limportanza assoluta che hanno i dati con cui si addestra 'algoritmo. Infatti &
probabile che si confonda dopo avergli insegnato a riconoscere il dolore a
causa dellimpurita dei dati ricevuti come input.

€ possibile notare come sia relativamente semplice riconoscere e separare espressioni
come felicita e tristezza rispetto alla difficolta che si incontra nel separare la tristezza dal
dolore, la rabbia dal dolore o addirittura perfino la felicita dal dolore basti pensare alle foto
nel database di espressioni di dolore simulato in cui molte persone avevano una

espressione sorridente. Questo € il motivo centrale del perché non & stato possibile trovare
algoritmi che riguardassero il riconoscimento del dolore. Probabilmente essendo piu difficile
da riconoscere, piu difficile da separare dalle altre espressioni e meno popolare tra le
persone, finisce per non avere la stessa diffusione e popolarita rispetto ad altre espressioni
pil comuni.

Analogia con la Storia

Un altra cosa curiosa emersa da questo “fallimento” & I'analogia tra la difficolta riscontrata
nell’affrontare I'argomento del dolore e la difficolta che hanno riscontrato le varie culture nel
affrontarlo durante il corso della storia

Si parte dalla visione del dolore della cultura babilonese che veniva guarito attraverso la
“magia” e miscugli di erbe naturali (infatti i medici babilonesi erano chiamati medici-maghi)

S D P e N a®

Y

B —

EAANEE - Al T

alla visione del dolore come una punizione divina che hanno sempre avuto religioni tipo
I'ebraismo in cui il curatore era a tutti gli effetti il sacerdote

Si arriva alle culture asiatiche dove il dolore nella storia non viene combattuto ma viene
accettato come parte della vita. Ad esempio, nel buddismo, il superamento del dolore
avveniva attraverso il raggiungimento della pace interiore.

Quindi ogni popolo e cultura per nei confronti del dolore reagiva in modo diverso ma sempre
in modo abbastanza astratto. Fino all’arrivo di Ippocrate che nel quarto secolo avanti cristo
descrisse il dolore finalmente come uno squilibrio fisico e quindi una cosa che poteva essere

fisicamente spiegata e curata.

La storia poi come sappiamo ha fatto il suo corso, le invasioni barbariche portarono
all’'avvento nel medioevo e l'illuminismo fece progredire la scienza fino ai giorni nostri. Oggi
infatti sappiamo che tutti loro avevano una parte di ragione nel descrivere il dolore poiché
non & ne una cosa prettamente psicologica ne prettamente fisica ma € appunto un
complicato intreccio tra le due cose. Quindi esattamente & esattamente cio con cui

Abbiamo visto quindi come il nostro sforzo nell’affrontare un argomento complesso come il
dolore non & un avvenimento isolato ma rieccheggia durante tutto il corso della storia

Algoritmo Finale

Infine ¢’é una buona notizia per il futuro del Machine Learning nel campo del dolore

A san Diego ¢é stato sviluppato un algoritmo di apprendimento automatico per il
riconoscimento delle espressioni chiamato CERT (Computer Expression Recognition
Toolbox) il quale € stato testato per riconoscere I'espressione di dolore reale nelle persone
da un espressione di dolore che viene simulata. | test effettuati hanno dato come risultato
che un essere umano seppure sia naturalmente in grado di percepire correttamente le
espressioni ed emozioni dei suoi simili non supera il 50% di accuratezza quando si parla di
riconoscimento del dolore simulato. Inoltre anche se addestrato la sua capacita di
individuare espressioni di dolore reale rimane inferiore al 60%. Utilizzando I'algoritmo CERT
si &€ dimostrata la potenzialita del Machine Learning. L’algoritmo ha ottenuto una precisione
dell’85% sul riconoscimento del dolore simulato. Siamo ancora agli albori di queste
tecnologie e gia in questo specifico campo l'algoritmo CERT ottiene una precisione
largamente maggiore rispetto ad un essere umano. Questo risultato dimostra anche che il
futuro spingera molto in questa direzione e quindi che algoritmi come CERT avranno un
enorme effetto sulla societa ed il modo in cui vivremo nei prossimi anni

